(U4) MICROCONTROLLERS (CLASS ACTIVITIES)

1 NAME AND SURNAMES:						
2 NAME AND SU	URNAMES:					
Day/Date	Signo	atures	Day/Date	Signatures		
1/	Name1:	Name2:	2/	Name1:	Name2:	

• **Electricity versus Electronics**. Decide if the circuits below are electric or electronic circuits and label the properties with the words **ecity** or **enics**.

They work with high voltages and currents:

Electrical components include light bulbs, motors, relays, etc.:

They use components capable of operating and controlling small currents:

They use bigger components that need much more power to work:

Uses: lighting houses, powering motors... (high output):

Uses: they are used in telecommunications, sound, photography, video, etc.:

• Electronics. Identify the components below (potentiometer, rectifier diode, capacitor, LED, resistor, transistor and LDR):

6 7 Printed Circuit borrad (PCB) 8

5

• Analogue signals versus Digital Signals

1 Relay

2

3

4

• **Programming_1** (with Scratch)

when A dicked dear go to x: 0 y: 0 set pen size to 5 set pen color to pen down point in direction 90 move 100 steps	-240 -180 (0,0) 2 -180 -180	original	mod1
point in direction 180 move 100 steps point in direction 90 move 100 steps point in direction 0 move 100 steps pen up stop all	mod2	mod3	mod4 (extra)
when clicked clear set pen size to 3 set pen color to	01 (polygon1)	O2 (polygon2) Change the size (10) and the colour (blue) of the pen and the side (300 steps	O3 (polygon3) Draw a square with 200 step sides
pen down point in direction 90 repeat 3 move 150 steps turn (* 120 degrees wait 1 secs	O4 (polygon2) Draw a pentagon/hexagon with 110 step sides	05 (polygon2) Draw a pentagon/hexagon with 110 step sides	06 circle Draw a circle of 1 step radius repeat 360 move 1 steps

• **Programming_2** (with Scratch)

Day/Date	Sign	atures	Day/Date	Sign	atures
3/	Name1:	Name2:	4/	Name1:	Name2:

Automation Control Systems

1. **Automatism**. Automation can be defined as the application of machines to tasks once performed by human beings or, increasingly, to tasks that would otherwise be impossible. Automation generally implies the integration of machines into a self-governing system.

• Complete the table below (label the first picture with the

• Identify the electronic components below and classify the into the correct group:

- ✓ Sensors:
- ✓ Actuators:
- ✓ Controllers: Relay
- 2. Electronic control versus programmed control. In the circuits below:

• Label the pictures below with electronic or programmed control.

• Identify the following components: LED, LDR, transistor, resistor, wires, power supply, controller and controller board.

• Complete the table.

5/ Name1: Name2: 6/ Name1: Name2:	Day/Date	Signa	tures	Day/Date	Sign	atures
	5/	Name1:	Name2:	6/	Name1:	Name2:

CREATIVE TECHNOLOGIES IN THE CLASSROOM

BLOCK 1 PROGRAMMING

Programming

- 😐 Processing
- 🗏 Line
- Screen and Pixels
- 🗏 Variables
- 💻 Setup and draw

Processing IDE interface

Projects

- Red snake (shortest project)
- Post it clock
- Catch the apple (longest project)

Result

Processing is an open source **programming language** and environment for people who want to create images, animations, and interactions.

- ✓ Program→Instructions→Code
 ✓ IDE (Integrated Development Environment)→Text Editor
- ✓ **Compiling**: IDE translate **programming code** (instructions) into **machine language**
- ✓ draw(): programs that continually run (loop) ✓ setup (): code that runs just once

Program

sketch_drawing00a - - X sketch_01_line 0 void setup(){ 1 2 3 4 5 6 size(300,400); sketch_160418a } void setup() { void draw(){ } 7 8 line (0,0,150,200); void draw() 9 }

lines

1) Create the following free shapes (call the teacher for the ellipse):

2) Create the programs below (copy the firs two and create the other one)

	sketch_05_mix2
sketch_05_mix1	<pre>1 size(480, 120); 2 smooth(); 3 ellipse(75, 60, 90, 90);</pre>
1 2 size(480, 120); 3 ellipse(140, 0, 190, 190);	<pre>4 strokeWeight(8); // Stroke weight to 8 pixels 5 ellipse(175, 60, 90, 90); 6 ellipse(279, 60, 90, 90):</pre>
4 // The rectangle draws on top of the ellipse 5 // because it comes after in the code	<pre>7 strokeWeight(20); // Stroke weight to 20 pixels 8 ellipse(389, 60, 90, 90);</pre>
rect(160, 30, 260, 20);	The single parameter to strokeWeight() sets the

width of drawn lines:

3) Functions background(), fill(), and stroke() allow us to use colours for the display window (background), to fill shapes and set the width of outlines (stroke). The values of the parameters are in the range of 0 (0000000) to 255 (1111111), where 255 is white, 128 is medium gray, and

0 is black.

✓ Create the program below to see how to use colours

	sketch_11_colours2
1	size(480, 120);
2	noStroke();
3	<pre>smooth();</pre>
4	background(204, 226, 225); // Light blue color
5	fill(255, 0, 0, 160); // Red color
6	ellipse(132, 82, 200, 200); // Red circle
7	fill(0, 255, 0, 160); // Green color
8	ellipse(228, -16, 200, 200); // Green circle
9	fill(0, 0, 255, 160); // Blue color
10	ellipse(268, 118, 200, 200); // Blue circle

Variables

A variable stores a value in memory so that it can be used later in a program. The variable can be used many times within a single program, and the value is easily changed while the program is running. When you make your own variables, you determine the **name**, the **data type**, and the **value**. Variables must first **be declared**, which sets aside space in the computer's memory to store the information.

4) Create the following programs:

5) Do the same thing over and over: use a for Loop (Repetition)

	sketch_22_repetition
1	size(480, 120);
2	<pre>smooth();</pre>
3	<pre>strokeWeight(8);</pre>
4	line(20, 40, 80, 80);
5	line(80, 40, 140, 80);
6	line(140, 40, 200, 80);
7	line(200, 40, 260, 80);
8	line(260, 40, 320, 80);
9	line(320, 40, 380, 80);
10	line(380, 40, 440, 80);

Day/Date	Signa	tures	Day/Date	Signo	atures
7/	Name1:	Name2:	8/	Name1:	Name2:

Project: Red Snake

6) Create the following project (web): Red Snake

Draw a circle	Make the circle move	Gradually shift colour (1&2)	Use sin() function	Changing the shape
	2	3	0	
~ ·			• • • • •	

Project: Post-it Clock Project: Catch the apple

Day/Date	Signatures		Day/Date	Sign	atures
9/	Name1:	Name2:	10/	Name1:	Name2:
	BLOC	K 2 S	Sports		

Control boards (Arduino)

- What is the CTC Board
- 💻 Digital signals
- □ Count in Binary
- Blink and Beep
- 💻 Digital inputs

What is the CTC Board

Arduino (Arduino 101) is an open-source prototyping platform based on easy-to-use hardware and software. Arduino boards are able to read inputs (light on a sensor, a finger on a button....)

Projects

- 0 Racing
- React
- 0 Simon Says
- 0
- Fencing (shortest project) Pong®

Basketball

Digital Die (longest project)

and turn it into an **output** (activating a motor, turning on an LED...). You can **program** the board by sending a **set of instructions** (to the microcontroller on the board) using the **IDE** (Integrated Development Environment) for Arduino.

DIGITAL PINS		GENUINO IDE
4888	int led = 13;	VERIFY
	pinMode(led, OUTPUT);)	
RESET BUTTON	<pre>void loop () { digitalWrite(led, HIGH); delay(1000); digitalWrite(led, IGM); </pre>	I NEW
POWER	delay(1000);	DPEN
CONNECTOR CONNECTOR	Uploating	. SAVE
PINS INTEL 101		SERIAL MONITOR
		MESSAGE AREA

• Arduino boards connect to your computer using a USB cable. It must be connected in order

to **upload a program** as well as supplying power to the board. We could also power the board by

using an external power source like a battery or a power supply.

Power

The Uno board can be powered via the **USB connection** or with an external power supply. **5V.**This pin outputs a regulated 5V from the regulator on the board. **GND.** Ground pins.

Input and Output

The Uno has **6 analog inputs**, labeled A0 through A5.

Each of the **14 digital pins**, labeled 0 through 13 on the Uno can be used as an input or output, using *pinMode()*, *digitalWrite()*, *and digialRead()* functions.

In addition, some pins have specialized functions: PWM: **3, 5, 6, 9, 10**, and **11**. Provide 8-bit PWM output with the **analogWrite()** function.

LED: 13. There is a **built-in LED** driven by digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

Reset. Bring this line LOW to reset the microcontroller.

● Make sure the IDE is configured correctly: the board (Tools→Board→Arduino Genuino 101)

and the port (Tools→Serial Port)

• Activity in

treate the first 2 programs and call the teacher.

- Built-in LED blink: only the Arduino board + program
- LED Blink: circuit + the same program (notice the picture below)

• 2 Activities in our General Website: the first 16 binary numbers and check your binary numbers

Day/Date	Signa	tures	Day/Date	Sign	atures
11/	Name1:	Name2:	12/	Name1:	Name2:

Project: Fencing

• Identify the components you need for the project:

red-green-blue

• Follow the steps in the web.

Day/Date	Signatures		Day/Date	Signatures	
13/	Name1:	Name2:	14/	Name1:	Name2:

Control boards (Arduino)

- 💻 Reading analogue signals
- 💻 Writing analogue signals
- 😐 Light sensor
- Serial port
- Sending to the computer
- Receiving from the computer

Analogue Signals

- Analogue inputs: A0, A1, A2, A3, A4 and A5. analogRead() \odot
- Analogue values: 0 V: 0 (000000000); 2,5 V: 512 (100000000); 5 V: 1023 (11111111) \odot
- Analogue components: potentiometer. Practice with the following example(analog_01): \odot

Projects

- 0 Drawdio
- 0 Boombox
- Sequencer 8

- 0 Binary LP
- 0 Cookie Monster (longest
- project)
- P.O.V (shortest project) 8
- Knock Knock box 20

• How many different values can analogReadread?

analog_03

PWM (Pulse Width Modulation) analogWrite()

Digital pins with ~ (tilde): analogue outputs

analogWrite uses 8 bits to write the values: from 00000000 () to 11111111 ().

analogRead(analogPin) analogWrite(pwmPin, pwmValue) map(value, fromMin, fromMax, toMin, toMax)

• Map(sensorValue, 0, 1023, 0, 255): the data from the potentiometer (0-1023) needs to be converted to fit into the smaller range (0-255) using it to dim the LED.

- Practice with the following examples
 - analog_02

Light Sensor

• LDR (Light Dependent Resistor) is an analogue light sensor that detects the amount of light present, and depending on this amount it will return a specific analogue value.

analog_04: LDR

analog_04 (serial port)

void setup() { Serial.begin(9600);

}

}

void loop() { int sensorValue = analogRead(A1); Serial.println(sensorValue); delay(1000);

Serial Port

Serial = one after another Serial communication = one bit after another The speed = baud, or bits per second

• The way the Arduino boards "talk" to the computer is through something called a serial port (USB port). Through the serial port you can send or receive text (string) and communicate with other software as well. For example you can read from a button and send the button state data to a processing sketch (a program) that changes the colour of the screen when the button is pushed.

• Pin 1, **TX or transmission**, sends the data from the Arduino

Serial.begin(speed) Serial.print(message) Serial.println(message)

- Printing light sensor values (analog_04: LDR)
- The Pin O, **RX or reception**, receives the data to the Arduino

Serial.begin(speed) Serial.available() Serial.read()

-
- 1 int ledPin=13;
 2 int incomingBy;
 - int incomingByte;
- 3
 4 void setup() {
- 5 Serial.begin(9600);
- 6 pinMode(ledPin,OUTPUT);
- 7 }

- 8 void loop() {
 9 if(Serial.avail
- 9 if(Serial.available()>0){
 10 incomingByte=Serial.read();
- 11 if(incomingByte=='H'){
- 12 digitalWrite(ledPin, HIGH);
- 13 }
- 14 if(incomingByte=='L'){
- 15 digitalWrite(ledPin,LOW);
- 16 }
- 10 } 17 }
- 18 }

• Serial.available(): checks if there are any signals coming from the serial port. Returns either true or false.

• Serial.read(): Reads a byte from the serial port.

Day/Date	Signatures		Day/Date	Signatures	
15/	Name1:	Name2:	16/	Name1:	Name2:

 \odot Go to our general website \rightarrow Unit $3 \rightarrow$ ICT Activities and complete the following activities:

Introduction to Microcontrollers	Q.	G.	G	-	G.	A	G.	Q.
Programming	Scrat	tch	Proces	sing	Pr	ocessing	Proc	cessing

DIGITAL SIGNALS

• (web) Electronic control versus programmed control. In the circuits below:

220Ω	Type of control:		Function of the resistor: Possible real application for this circuit:		
	Input component:				
	Output component:				
7 2		Type of cont	trol:	Input component:	
		Output component:		Digital components:	
"duino"		Complete the figure below with 7 words:			
8	2	on o	ff 📘		
		— ()		
POUCE ANALOG IN		5V –	- HIGH		
	+	HIGH –	Inp	out —	

<pre>const int buttonPin = ; const int ledPin = ; int buttonState = 0;</pre>	Convert the numbers below			
void setup() {	buttonPin= ;	into bin	ary numbers (6	
pinMode (buttonPin,); //	ledPin= ;	bits):		
<pre>void loop(){ // read the state of the pushbu</pre>	pinMode (ledPin,)	0:	12:	
<pre>buttonState = digitalRead(butto</pre>	pinMode (buttonPin,)	2:	15:	
<pre>// if it is, the buttonState i: if (buttonState ==) { // turn LED on:</pre>	if (buttonState==)	<u>-</u> . 6:	18:	
digitalWrite(ledPin, barn);)	digitalWrite (ledPin,)	о. q.	23	
<pre>else { // turn LED off: digitalWrite(ledPin,); }</pre>	digitalWrite (ledPin,)	1 Operation:		
1				

 \odot Programming (web). Create a basic program to make 3 LEDs blink (alternatively with a

frequency of 0,333 Hz) one after another:

program

ANALOG SIGNALS and SERIAL PORT

• In the circuit below:

• Draw its circuit diagram (with symbols)

• (web) In an electronic control, when the LDR is well lit, the resistance is low/high and current passes through. The brighter it is, the less/more current goes through. So, the LED will be lighting up in night time/day time. LDR are digital /analogue sensor.

electronic control		ctronic control	circuit diagram	programmed control	
	&			Pin 9 LED 330Ω Resistor GND (ground) (-)	+5 Volts Photo Resistor Pin AØ 10KΩ Resistor

• (web) In a **programmed control** as we slide the wiper from left to right the external light increases/decreases and so the resistance of the LDR increases/decreases.

• Wire the circuit below taking into account the circuit above (on the left)

- How can we see the different values from the LDR?
- What is the main difference between both controls?